Quick Start Guide
This guide will help you quickly create your first ML workspace and run a sample project using Trailer.dev.
Prerequisites
Install Trailer.dev
bash# Pull the standalone container docker pull ghcr.io/trailer-dev/trailer:latestStart Trailer.dev
bash# Run in standalone mode docker run -p 8090:8090 --gpus all ghcr.io/trailer-dev/trailer:latestAccess the Web Interface
- Open your browser and navigate to
http://localhost:8090 - Log in with your credentials
- Open your browser and navigate to
Create Your First Workspace
Create a New Workspace
- Click "New Workspace" in the web interface
- Choose a name for your workspace
- Select "Python ML" as the template
Configure Python Environment
Set Up GPU Support
Run a Sample Project
python# sample.py import torch from transformers import AutoModel, AutoTokenizer # Load model and tokenizer model = AutoModel.from_pretrained("bert-base-uncased") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Test GPU availability print(f"GPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU device: {torch.cuda.get_device_name(0)}")Save and Share Workspace
Next Steps
Explore Features
Get Support